
KSME International Journal, VoL 17 No. 4, pp. 599--605, 2003 599 

A Comparison Study Between Navier-Stokes Equation and 
Reynolds Equation in Lubricating Flow Regime 
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For practical calculations, the Reynolds equation is frequently used to analyze the lubricating 

flow. The full Navier-Stokes Equations are used to find validity limits of Reynolds equation in 

a lubricating flow regime by result comparison. As the amplitude of wavy upper wall increased 

at a given average channel height, the difference between Navier-Stokes and lubrication theory 

decreased slightly; however, as the minimum distance in channel throat increased, the differ- 

ences in the maximum pressure between Navier-Stokes and lubrication theory became large. 
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N o m e n c l a t u r e  
h Height of channel 

h0, h~ Average channel distance, amplitude 

of the cosine wavy wall, repectively 

p Pressure 

P0, P2 Perturbation pressure of order 0, 2 

R e  Reynolds number pUlref/[l 
Q Volume flow rate 

u, v, w Velocity component 

x, y, z Rectangular Cartesian coordinates 

e Perturbation parameter, h /L 

!b Stream function 

~0, ~z, ~4 perturbation stream function of order 

0 , 2 , 4  

/.t Viscosity 

u Kinematic viscosity 

Superscript 
( ) '  : Derivative 

Subscript 
min : minimum 

max : maximum 

* Corresponding Author, 
E-mail : djsong @ yu.ac.kr 
TEL: +82-53-810-2449; FAX: +82 53 813 3703 
Yeungnam University, 214-1, Dae-dong, Gyongsan, 
712-749, Korea. (Manuscript Received May 14, 2002; 
Revised November 28, 2002) 

L : Lower surface 

U : Upper surface 

( )x : Derivative with respect to x 

1. Introduct ion  

This work was motivated to provide basic 

guidelines for using a simplified subset of the 

Navier-Stokes equation, the "Reynolds equa- 

tion", in a lubricating flow regime. Engineering 

field applications such as lubricating flow in a 

power steering actuator, or hydraulic actuators in 

many hydraulic equipments can be potential areas 

of applying this simplified Reynolds equation. 

The study was particularly motivated by the 

power steering actuator research/lip-seal friction 

study between Ford Sci-Lab and University of 

Michigan, Ann Arbor. Typical schematic of lip 

seal cross section of an actuator can be seen in 

Fig. 1. The metal shaft slides back and forth at 

various frequencies and speeds while the lip seal 

elastomer holds tightly by order of roughness of 

metal shaft. The typical clearance between metal 

shaft and elastomer lip seal is about 0.1 /.tm and 

the lubricating oil is heavy paraffin oil. The sur- 

face roughness of the metal shaft can be consi- 

dered as a sinusoidal wall and elastomer surface 

as a smooth wall ; however, in this study to make 
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/ F l , t~ t~"~ l  e:f between the lubricating channels. The results are 

compared with FIDAP (1993), a full Navier- 

Stokes simulation code. More specific guide lines 

for usage of Reynolds equation in the current 

lubricating flow conditions are to be suggested. 

Nyio 
~-~ac~ " Contact 
Riro 

Fig. 1 Schematic of lip seal cross section 

the problem steady the elastomer seal is assumed 

as a wavy wall and the metal shaft as a sooth wall. 

The smooth metal shaft is moving at a constant 

speed of 0.0254 m/sec instead of oscillating back 

and forth. 

The lubrication theory has been applied fre- 

quently by various researchers in tribology and 

biofluids due to its simplicity and easiness to 

obtain useful solutions. Schumack, et al. (1991) 

investigated the effect of 0 TM and 2 nd order lubri- 

cation theory in the analysis of fluid flow under a 

grinding wheel. Dusey (1993) also compared the 

lubrication theory with the Navier-Stokes meth- 

od, using an artificial compressibility when sim- 

ulating bolus transport in the esophagus. Hsu and 

Lee (1994), Dowson and Wang (1994), Wolff 

and Kubo (1994) studied elasto-hydrodynamic 

lubrication. Hua and Kohnsari (1995) studied 

the elasto hydrodynamic transitional lubrication 

flow in gear transmission. Carvalho and Scriven 

(1997) analyzed a capillary phenomena and vis- 

coelastic effect in roller nips. They indicated that 

except very narrow lubricating flow regime in 

roller coating gap the lubricating equation could 

not be applied safely; however, they did not 

provide any quantitative criteria for the effective 

regime of Reynolds equation. Lubrication be- 

havior in a mechanical force seal to control 

leakage of working fluid at the interface between 

a rotating shaft and its housing has been studied 

by using the Galerkin Finite Element Method 

(Choie t  at., 2001). 
In this study, the 0 th and 2 nd order lubrication 

equations are used to compute the flow field 

2. Analysis 

The lubrication theory which was first derived 

by Reynolds is valid when the ratio of the length 

scales along the normal and tangential directions 

to the dominant flow direction is much less than 

unity and Reynolds number based on the charac- 

teristic length is very low. In such a flow regime, 

pressure force and viscous force are dominant and 

therefore convection terms, fluid inertia, pressure 

gradient across the thin fluid film, velocity gra- 

dients other than across the film may be neglected 

in 0 th order lubrication theory. The 2 nd order 

lubrication theory which can account the pressure 

variation across the thin film can be derived from 

the ftdl Navier Stokes equation by introducing 

the perturbation methods using stream function 

and pressure. 

The 2 D, streamfunction form of the dimen- 

sionless, steady, incompressible flow governing 

equations for lubrication flow regime is 

¢2Re ( ~fy~fxyy - -  ~ X ~ f y y y )  - -  e4Re ( ~xC%xy -- ~,'y~xxx) 

,~4,. 04¢-2~ °~¢' °~¢ (1) 
= v  ~ =  3y 4 . c 3 X 2 3 y  2-~-E 4 3X 4 

where 

. i T  channel height 
e = n / z ~ =  channel length 

with boundary conditions 

~=~ky I = 0  at y = 0  

~ - Q = ~ k y = 0  at y = h ( x )  

By expanding the stream function using slowly 

varying assumption 

¢ = ~'° 4- ¢2 ¢2 + ~4 ~k4 + " " "  (2) 

P : P o + ~ P 2 + ' ' "  

The equation at order unity can be written as 

¢0 xyyy = 0  

/ 3Q 2 1 2Q 
h 2 h ) + 9 ( h  2 t f l )  (3) ¢~0=y+y2 t 
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At O ( J ) "  

!k2 .vyy, = -- 2 ~o xxyy + R e ( (Soy ~o Xyy - -  ~tox ¢'oyyy ) ( 4 ) 

with boundary conditions 

¢2=!&y=0 at y=O 

~2=~2y=0 at y = h  

where Q is the volume flow rate. 

1 Q 1 y 3 /Q'~2_I_... ~ 
'~'2=Re h'Y2 [14 h 4 z h 35 t~ - /  ] 

mensionalized by reference length of 0.075/zm. 

The governing equation becomes a nonlinear or- 

dinary differential equation for pressure. The 

Runge-Kutta-Fehlberg method with secant slope 

strategy (shooting method) is used to solve this 

ordinary differential equation. This is an initial 

value problem with a smooth bottom wall (metal 

shaft) moving at constant speed of 0.0254 m/sec. 

3. Results  and Discuss ion  

The pressure from the scaled Stokes equations 

to order J can be written after some algebra as 

follows. 

po:6/~dx+12Q/~dx (5) 

[ 27 O2+ 3 Q 1 1,,I/~/ 

{ h'Q ] -4y  ( ~ ) + , 2 Q y  ( ~ ) ÷ 6  [ YZh') -6/5~ h2 / \ / ~ - ]  (6) 

18Qy zh' 48 (o fh ,~ /h~dx )+~ /  ;h  '~ , ' h' 5 U h ax) 

The detailed derivation can be found in Sc- 

humack et al. (1991). The integral form of go- 

verning equation can be rewritten between lu- 

bricating channels in differential form as follows : 

0=a x ( .) 12/1 ~x 12/.t oOy 

+~3x [ ph (u~+ub)  ] + ~ y  [ 2 ] (7) 

Oh pv~ ~h + h 8p +o(w~-w~)  - o u ~  & -  a t  

y = h : u = u~, v = v~ ( upper surface) 
y = O  : u = u b ,  v = v b ( l o w e r  surface) 

If we ignore the quantity of side leakage terms 

which have 8 /8y  derivatives, the 0 th order Rey- 

nolds equation in differential form may be written 

as follows. 

O (h 3 8p~ _ O {h~ 
~ 0  

Ox \12  & / Ox \ 2 ]  

Poiseulle flow Coutte (stretch, physical wedge) 
(81) 

When the upper wall is assumed as a sinusoidal 

rubber, the upper wall equation can be defined as 

h = h o +  hi cos (0.2 7rx). All the lengths are nondi- 
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The typical lubricating channel geometry can 

be approximated as a fixed upper sinusoidal wall 

with one period and lower flat plate moving at a 

constant speed as shown in Fig. 2. The real metal 

shaft is axisymmetric; however, since we are 

dealing with microscopic lubrication channel, the 

average channel heights is about 0.075 ¢zm. Even 

the small near contact lubrication regime contains 

thousands of microscopic wavy channels, so we 

assumed it as 2-dimensional flowfield. Working 

fluid is heavy paraffin oil of specific gravity 0.87 

and kinematic viscosity 66.7 mmZ/s. The piston is 

assumed to move at a constant speed of 0.0254 m/  

sec, and the Reynolds number based on reference 

length of 0.075 ¢tm is 2.856X 10 -6. This is a typi- 

cal lubrication flow condition, where the pressure 

and viscous diffusion terms are in equilibrium. 

The periodic boundary conditions are used at the 

inlet and the exit. 

FIDAP (1993) is used to compute the fully two- 

dimensional viscous flow in the microscopic 

channel. 

f ",%2,'17£,'i,;%%%7 ..... t 
I r / / ~  

Incom,nressiblt~ fluM 

, , r / / , , ~ / / / / , ~ / / / . , . / , / ~ , / / / / / / / / / / / / / / / / / / /  

~- L = 0.75/an -> 

Fig. 2 

), 0.0254m/ 
/ SeC 

Enlarged schematic of lubricating channel 
flow regime (lrej=0.075/ml) 
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Table 1 Pmax/Pret con7 ~arison among different h : 1 + hi cos 0.2 zrx geometries 

Geometry 

1+0.1 COS 0.2 zrx 
1 +0.5 cos 0.2 zcx 

1 +0.75 cos 0.2 ~x 
1 +0.9 cos 0.2 zcx 
I +0.99 cos 0.2 zrx 

hmln 

0.9 
0.5 

0.25 
0.1 

0.01 

FIDAP 0 th Lub. 2 nu Lub. P0tJPvmAp (%) 

1.05865 0.96071 0.963 90.75% 
6.4858 5.930 5.943 91.4% 

17.0 15.388 15.404 90.39/00 
56.06 52.16 52.06 93.8% 

1433.08 1412.9 1404.1 98.59 % 

3.1 Th e  e f f e c t  o f  ampl i tude  o f  upper w a v y  

w a l l  on the m a x i m u m  pres sure  

The upper wavy elastomcr wall might be des- 

cribed as h = h o + h t  cos(0.2 a'x) where hl was the 

ampli tude of  the cosine wave wall, while the 

average channel  distance h0 was kept constant as 

unity. The ampli tude hi was varied from 0.1 (the 

largest gap between upper and lower wall) to 0.99 

(the smallest gap) so that we could observe the 

effect of  the narrowest gap distance hrmn on the 

maximum pressure and its location. Typical  wall  

pressure distr ibut ion compar ison was given in 

Fig. 3. The max imum pressure was built  up in the 

convergent  part of  upper wave wall ; however,  the 

min imum pressure was occurred in the divergent 

part. 

In Fig. 4, as we decreased the ampli tude of  the 

wavy wall  or increased the min imum gap distance 

hmm, the difference between Navier -S tokes  meth- 

od ( F I D A P )  and Reynolds  equat ion became lar- 

ger. The relative pressure ratio in percentage be- 

tween F I D A P  and 0 th order lubricat ion theory 

can be found in Table  1. When hm~n was 0.01, then 

p0Lub/pFmAp:0.986. The  peak pressure difference 

was very small, indicating the Reynolds  equat ion 

was valid in this flow region ; when h~n=0 .9 ,  the 

peak pressure ratio was 0.9075 and the pressure 

difference was not negligible ; however,  we could 

still use the Reynolds equat ion for engineering 

practice. The ampli tude of  the wavy wall did not 

affect the solution much at a given average dis- 

tance h 0 = l .  The  average distance between the 

metal shaft and the wavy wall, h0, seemed to be 

important  in applying Reynolds  equat ion.  Fo r  the 

case of  h o =  1, i.e., same as the reference length of  

0.075/~m, the Reynolds  equat ion predicted the 

peak pressures in the channel  reasonably well 

when compared with Navier -S tokes  equat ion for 
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Pmtcx/Pret VS hn~n/lret comparison plot among 

various h =  1 +h i  cos(0.2 zx) geometries 

all the different ampli tudes h~ of  the upper wavy 

wall on the maximum pressure. 

3.2 Th e  e f f e c t  o f  a v e r a g e  c h a n n e l  d i s t a n c e  

on the m a x i m u m  pres sure  

We moved the upper wavy wall  up and down 

to see the effect of  average channel  distance h0 

without changing ampli tude of  the wavy wall. 

The  dimensionless upper wall geometry equat ion  

was h = h 0 + 0 . 5  cos(0.2 x.x). As we decreased ho, 
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Fig. 6 Wal l  pressure comparison among F IDAP,  0 t" 

and 2 nd order lubr icat ion theory along h =  

0.6+0.5 cos 0.2 ~rx 

the local maximum and minimum pressure region 

became smaller. The  pressure gradient across the 

channel  became negligible so that the pressure 

was nearly constant at normal  direction. The 

Reynolds  equat ion agreed quite well with the 

Navie r -S tokes  equat ion when the average gap 

distance ho=0.51,  or  the min imum height hr~n = 

0.01, as in Fig. 5. The maximum pressure differ- 

ence between the two methods was less than 0.3% 

as shown in Table  2. Figure  6 shows wall pressure 

compar ison  among Navier -S tokes  ( F I D A P ) ,  0 th 

and 2 nd order lubricat ion theories a long the upper 

surface prescribed by h = 0 . 6 + 0 . 5  cos 0.2 ¢r.x. The 

lubricat ion theory predicted the wall pressure 

distr ibut ion quite accurately when compared with 

the full Navier -S tokes  method. As shown in Fig. 

7, the relative difference between the Nav ie r -  

Stokes and Reynolds  equat ion was larger as we 
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increased the average gap distance ho to 1.5. 

When h0 was order of  unity, the pressure ratio 

changed between about  90--  100%. From this the 

Reynolds  equat ion seemed to be reasonable rela 

tively when h0 was order of  unity or  less;  how- 

ever, when we increased h0 substantially above 

1.0, the difference became larger, so that we could 

not use the Reynolds  equat ion safely in such 

region. For  example when h0=5.5 or  hmln=5.0, 

the pressure ratio between Lubricat ion theory and 

Navier -S tokes  equat ion,  PoLub/Prmae, was 0.246 

as shown in Fig. 8. The Reynolds equat ion pre- 

dicted the peak pressure significantly lower than 

Navier -S tokes  did. The maximum pressure com- 

parisons among Navier -S tokes  and Reynolds  

equat ions for h = h o + 0 . 5  cos 0.2 zrx geometry are 

tabulated in Table  2. 

The local maximum and minimum pressure posi- 

tions of  two geometry shapes h = h 0 + 0 . 5 c o s  
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T a b l e  2 Pmsx/Pref comparison among different h : h 0 + 0 . 5  cos 0.2 rex geometries 

Geometry h~n FIDAP 0 th Lub. 2 nd Lub. P0th/PFIDaP (%) 

5.5+0.5 COS 0.2 ZrX 
1.5+0.5 COS 0.2 rex 
1.1 +0.5 COS 0.2 ZrX 
1.0+0.5 cos 0.2 rex 
0.6+0.5 cos 0.2 rex 
0.51 +0.5 cos 0.2~x 

5.0 
1.0 
0.6 
0.5 
0.1 

0.01 

0.1172 0.02884 0.02829 24.6% 
1.8128 1.533 1.538 84.5% 
4.705 4.287 4.266 91. 1% 
6.4858 5.93 5.927 91.4% 
75.510 72.53 72.97 96.05% 
2099.70 2094.0 2094.5 99.7~O 

1 0 '  

I % 
/ 

lO o [ 

J 
1 0  4 . . . .  

i 
1 0  ~ . . . . . .  _ 

I I , I , , I , 
2.5 3 3 5 4 

X / 1 . ~  

• h= l+  htcosO.2xx 
h=ho+O.ScosO . 2 , ~ x  

, F 

- . i •  

i , 
4 5  

Fig .  9 Comparison of the maximum pressure loca- 

tion and the minimum channel throat 

• i • FIDAP 
~ o '  " ' Oth lubrication 

l o -  / 

10 '  " i . . . . .  

lo : '  

Fig. 10 Pmax/Pret vs hmin/Iret comparison plot among 

various h=h0+0.5  cos(0.2 zrx) geometries 

0.2 zrx and h = l + h l  cos(0.2 zrx) moved toward 

the symmetry plane when we decreased the mini-  

mum gap distance, hmtn, between the upper wall 

and bot tom flat shaft as shown in Fig. 9. When 

the min imum gap distance hm~n was near I (Figs. 

7 and 9), the peak pressure posit ion was located 

at X/lre1=3~3.5 while it was located at x/lrel  = 

4.9 (the center l o c a t i o n = 5 )  when hmln=0.01 

(Figs. 5 and 9). Figure 10 shows the relat ionship 

between the maximum pressure and the min imum 

gap distance. The difference between Nav ie r -  

C o p y r i g h t  (C) 2003 NuriMedia Co., Ltd. 

Stokes and Reynolds  equat ion became larger as 

we increased the min imum gap distance hm~n sig- 

nificantly above 1. 

4. Conclusions 

The Reynolds  equat ion has been compared 

with the full Navier -S tokes  solution at various 

ampli tudes of  wavy wall and average channel  gap 

distances. As the min imum gap distance in chan- 

nel throat increased, the difference in the maxi- 

mum pressure between Navier -S tokes  method 

and lubrication theory became large. The Rey- 

nolds equat ion predicted a reasonable pressure 

distr ibution along the wavy wall when the nondi-  

mensional  average gap distance was near or less 

than I (order of  0.075/.tm). The ampli tude of  

wavy wall at a given average gap distance did not 

affect the solution much. The local maximum and 

min imum pressure locations were moving toward 

throat of  the channel  as we decreased the mini-  

mum gap distance hrmn. 
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